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ABSTRACT

The aim of this paper is to propose an internal model for a non-life insurer and to
apply this model for deriving optimal risk- and value-based management decisions
regarding the insurer’s investment strategy, which contribute to increasing share-
holder value. We thereby considerably extend previous work by explicitly account-
ing for the policyholders’ willingness to pay depending on their risk sensitivity
based on the insurer’s reported solvency status, which will be of great relevance
under Solvency Il. We further study the impact of the risk-free interest rate on at-
tainable and admissible risk-return asset combinations, dependencies between as-
sets and liabilities as well as the influence of reinsurance contracts, and we derive
analytical solutions for maximizing shareholder value. One main finding is that the
consideration of the policyholders’ willingness to pay depending on their risk sen-
sitivity towards the insurer’s reported solvency status is vital for optimal manage-
ment decisions and that in the present setting, reinsurance increases shareholder
value only for non-risk sensitive policyholders. Our results further emphasize that
low interest rates strongly restrict the insurer’s investment opportunities.

Keywords: Risk- and value-based decision-making; non-life insurance; Solvency Il; share-
holder value optimization

JEL Classification: G22; G28; G31

1. INTRODUCTION

Pillar 1 of Solvency Il requires that insurers derive solvency capital requirements either by
means of a standard model provided by the regulatory authorities or based on a company-
specific internal model that adequately reflects the firm’s risks (See, e.g., Eling et al., 2009).
An internal model should also be used in Pillar 2 for the firm’s own risk and solvency as-
sessment (ORSA) and should thus represent an integral part of an insurer’s risk- and value-
based management, i.e., to be applied for corporate risk management and asset allocation de-
cisions, for instance. However, the development of internal models requires considerable fi-
nancial and technical resources, which implies that the degree of complexity and the achieved
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benefits should be carefully balanced. Against this background, the aim of this paper is to
establish a simplified internal model for a non-life insurer and to apply this model for deriving
(optimal) risk- and value-based management decisions regarding the investment strategy,
which contribute to increasing shareholder value. In particular, by adjusting the asset alloca-
tion to satisfy solvency capital requirements, the approach should be less costly than raising
equity capital or adjusting the liability side (see Eling et al., 2009). Toward this end, we con-
siderably extend the analyses and model frameworks in previous work (e.g., Eling et al.,
2009; Braun et al., 2015; Zimmer et al., 2014) by studying the impact of several new key fea-
tures and their impact on shareholder value with analytical solutions, including the policy-
holders’ willingness to pay depending on the insurer’s reported solvency status, which despite
its great impact has not been studied to date in this context, the dependencies between assets
and liabilities as well as the impact of reinsurance contracts.

In previous work, Eling et al. (2009) derive minimum requirements for a non-life insurer’s
capital investment strategy that satisfy solvency restrictions based on different risk measures.
Using “solvency lines”, i.e. isoquants of risk and return combinations of the asset allocation
for a fixed safety level of the insurer, they determine admissible risk and return asset combi-
nations given a certain liability structure, and then compare these to allocation opportunities
actually available at the capital market based on portfolio theory. Similarly, but in a life insur-
ance context, Braun et al. (2015) study optimal asset allocations taking into account re-
strictions from solvency capital requirements, thereby comparing the Solvency Il standard
formula with an internal model. They find that the standard formula cannot well differentiate
investments on the basis of risk-return profiles due to an insufficient consideration of diversi-
fication effects and expected returns, and hence tends to promote inefficient portfolios. Fur-
thermore, experimental and empirical research (Lorson et al., 2012; Wakker et al., 1997;
Zimmer et al., 2009; Zimmer et al., 2014) shows that an insurer’s default risk can have a
strong influence on customer demand, where lower safety levels can lead to a considerable
reduction of achievable premiums. In this context, Zimmer et al. (2014) develop a risk man-
agement model assuming that the insurer’s default risk is fully known to consumers, and
based on this derive the solvency level that maximizes shareholder value, which is the case
for a shortfall probability of zero. These results emphasize that an insurer’s safety level
should be taken into account in risk- and value-based management as the reaction of custom-
ers to default risk (by way of the premium level) can considerably impact shareholder value.
This will be even more relevant when insurers have to publicly report their solvency status
under Solvency II.

Another aspect that should be considered in the context of optimal risk-return asset alloca-
tions under solvency constraints are potentially incorrect model specifications, which can lead
to biased results and to misguided decisions based thereon (Schmeiser et al., 2012; Wagner,



2014). For instance, Schmeiser et al. (2012) show that, among others, dependencies between
insurance asset classes have a considerable influence on risk measures in the context of capi-
tal requirements. In the context of deriving minimum requirements for the investment strate-
gy, Fischer and Schlitter (2015) further criticize that the standard model leads to an incentive
to avoid diversification between assets and liabilities, as dependencies are not adequately tak-
en into account in the standard model, which is in line with the results from Braun et al.
(2015). Overall, it is thus essential to consider the asset-liability relation for deriving mini-
mum requirements for the investment performance.

The purpose of this paper is to contribute to the existing literature in various relevant ways.
First, in contrast to Braun et al. (2015), we study a non-life insurer instead of a life insurer and
directly consider an internal model. Moreover, we extend the analysis in Eling et al. (2009)
and Braun et al. (2015) by focusing on the firm’s shareholder value under risk- and value-
based management decisions and by explicitly taking into account the policyholders’ willing-
ness to pay in our model framework when deriving admissible asset allocations under solven-
cy constraints. To investigate the influence of the policyholders’ risk sensitivity, we also ex-
tend the approach in Lorson et al. (2012) and Zimmer et al. (2014) and model the achievable
premium as a function of the insurer’s safety level and the policyholders’ risk assessment. In
this setting, we link the admissible risk-return combinations of the insurer’s asset portfolio
(i.e. those that are allowed under solvency constraints) to allocation opportunities actually
attainable at the capital market using portfolio theory, and then additionally derive the maxi-
mum achievable shareholder value. Our model further accounts for dependencies between
assets and liabilities, proportional reinsurance contracts as well as the influence of the risk-
free interest rate. In a numerical analysis, we study the impact of these determinants on the set
of attainable and admissible risk-return combinations for the asset allocation as well as on the
maximum shareholder value under different policyholder risk sensitivity scenarios. This al-
lows establishing a risk- and value-based management that can be used for an enterprise-wide
decision making by balancing risk-taking, solvency levels, and shareholder value, thereby
taking into account policyholder risk sensitivities. Given a certain level of equity capital, de-
riving a solvency line and optimal value-based management strategies regarding assets and
liabilities allows the derivation of key drivers that increase shareholder value. One main find-
ing is that the consideration of policyholders’ willingness to pay is of great relevance when
deriving optimal risk-return asset allocations under solvency constraints and that reinsurance
can considerably impact these results, depending on the level of the policyholders’ risk sensi-
tivity.

The remainder of this paper is structured as follows. Section 2 presents the model framework
for a non-life insurer, while Section 3 focuses on the derivation of attainable and admissible
risk-return combinations as well as shareholder value maximization given several underlying



conditions. An application of the developed approach with sensitivity analyses for various
policyholders’ risk sensitivities, asset-liability correlations and proportional reinsurance con-
tracts is provided in Section 4. The last section summarizes our main findings.

2. MODEL FRAMEWORK
Modeling assets and liabilities

In what follows, we present a simple one period-model for a non-life insurer, where at time
t =0, shareholders make an initial contribution of equity capital Eo and policyholders pay a
premium Po to insure possible claims C; at time t = 1. For simplification purposes and follow-
ing Braun et al. (2015), the claims are assumed to be normally distributed with expected value
4 and variance o, i.e.}

C ~ N(,uc,aé).

The premium in case of a default-free insurer is given by the actuarial expected value princi-
ple based on the expected claims with a nonnegative percentage loading J, i.e.,

P, = 4 -(1+65).

We further assume that the insurer may additionally purchase a proportional reinsurance con-
tract (re) at time t = 0, which covers a fraction A of the policyholders’ claims,

X*(1)=A4-C,.

The corresponding reinsurance premium =" is given by the expected payoff with a constant
loading 0" (reflecting costs for moral hazards, for instance), such that

7 =E[X{" |- (1+6%) =4 g - (1+5™).
Taking into account that the reinsurer bears part of the claims, the (net) liabilities of the insur-
er at time t = 1 are thus given by

L, =C,— X"

The initial capital Ao thus consists of equity Eo and premiums Po less reinsurance premiums

n.re ,

1 This assumption was subject to robustness tests using lognormally distributed claims.



A =E,+P—7",
which is invested at the capital market. The value of assets at time t = 1 is then given by
A=A-(1+r),

where r is the stochastic return on assets between t =0 and t = 1, where we again assume a
normal distribution with expected value z, and variance o’ (see also Braun et al., 2015),
i.e.,

r~ N(,ur,of).

We further assume a linear correlation p,. between assets A; and claims Ci. The resulting
equity capital at time t = 1 is then also normally distributed with

E,=A-L~N(E[E]VIE])

where the expected value (taking into account proportional reinsurance) is given by
E[E]=A -Q+u)-E[L]=A - Q+x)—(1-2) s, (1)
and the variance is

VIE]= A of +V[L]-2-A,-Cov(r.L,)
()
:Af-ar2+(1—/l)2-0'§—Z-A)-(l—/l)-ar-ac-prc.

Policyholders’ risk sensitivity

According to experimental and empirical research (Lorson et al., 2012; Wakker et al., 1997;
Zimmer et al., 2009; Zimmer et al., 2014), an insurer’s default risk can strongly impact cus-
tomer demand, with lower safety levels leading to a considerable reduction of the achievable
premiums. Whereas expected utility theory suggests that a small increase in the shortfall
probability should only reduce the policyholders’ willingness to pay in a marginal way, Wak-
ker et al. (1997) observe that the actual willingness to pay decreases sharply in the context of
“probabilistic insurance”, i.e. insurance contracts with a small non-zero shortfall probability.
They explain this phenomenon based on Kahneman and Tversky’s (1979) prospect theory,
according to which individuals tend to overweigh small (extreme) probability events and vice
versa. The low probabilities of an insurer’s default are thus assigned a weight higher than the
objective probability, implying a considerable reduction of premiums below the actuarially
fair premium, which also directly impacts shareholder value.



Hence, we adapt our model framework in order to take into account the policyholders’ will-
ingness to pay as a reaction to the reported solvency status depending on their risk sensitivity.
Toward this end, we extend the approach in Lorson et al. (2012), who calculate the premium
reduction compared to the premium offered by a default-free insurer as a function of the re-
ported one-year shortfall probability SP, which is the probability that the insurer’s assets are
not sufficient to cover the liabilities, i.e., the equity capital in t = 1 becomes negative:

SP=P(A <L,)=P(E <0).

To derive the premium reduction depending on the shortfall probability, Lorson et al. (2012)
perform a regression based on the empirical results of Zimmer et al. (2009), who conducted a
survey with 719 responses about the willingness to pay for three non-life (household) insur-
ance contracts differing only in the level of default risk (shortfall probabilities 0%, 0.3% and
4.9%). Their results show that the participants require a premium reduction of more than 26%
in case of a shortfall probability of 4.9% as compared to the default-free insurer. The estimat-
ed premium reduction function PR (in comparison to the default-free premium Po) as estimat-
ed by Lorson et al. (2012) is given by?

PR(SP) =0.0419-In(SP)+0.3855. €)

For an increasing safety level, i.e. a decreasing shortfall probability SP, the premium reduc-
tion function decreases until the default-free state is reached and the policyholders exhibit full
willingness to pay; the highest premium reduction amounts to 38.55% for a shortfall probabil-
ity converging to 1. However, since the policyholders’ risk assessment is not known, i.e. how
well-informed the policyholders are and if they can assess the numeric shortfall probability
correctly, the actual premium reduction might differ. To take into account the policyholders’
risk sensitivity, we thus extend the model in Lorson et al. (2012) and not only link the premi-
ums paid in t = 0 to the insurer’s reported shortfall probability SP = ¢, but also to the policy-
holders’ risk sensitivity represented by a scaling parameter s similar to Gatzert and Kellner
(2014). The premium payments in t = 0, Po(SP,s), are then given by

P, (SP,s)=PR,-max(1-s-PR(SP),0), $>0, SP=ae(0,1), B, = (1+5), 4

where SP = ¢, represents the reported one-year shortfall probability and PR the premium re-
duction function in Equation (3), which is chosen for illustration purposes and can also be
adjusted (e.g. depending on the type of contract). For s = 1, we obtain the risk sensitivity de-
scribed in Lorson et al. (2012).

2 Since this estimate is based on very few data points, Lorson et al. (2012) also consider an upper and lower
bound for the premium reduction to take into account the variability.



3. OPTIMAL ATTAINABLE AND ADMISSIBLE RISK-RETURN COMBINATIONS

To derive optimal risk- and value-based management decisions, we next consider minimum
solvency requirements in a risk-return (asset) context (here: expected return and standard de-
viation of assets that are compatible with the solvency requirements) and link these “admissi-
ble” risk-return combinations of the insurer’s asset portfolio to allocation opportunities actual-
ly “attainable” at the capital market as is done in Eling et al. (2009). In contrast to previous
work, however, we explicitly take into account the policyholders’ willingness to pay depend-
ing on the insurer’s solvency level, dependencies between assets and liabilities as well as the
effect of reinsurance contracts, which impact the liability side of the insurer’s balance sheet.

Capital market line: “Attainable ” risk-return combinations

To identify the risk-return profiles (or, 1) that are actually attainable at the market, we follow
the classical approach of Tobin (1958) and derive the capital market line (CML) representing
the set of efficient investment portfolios given risk-free lending and borrowing.

Let R=(Ry,R,,...,Ry)" denote the stochastic ((N +1)><1) -vector containing the returns of N
risky assets Ri, i = 1,...,N, and a risk-free investment with Ro = r+. In addition, M stands for the
vector with the expected values of the returns and X for the respective variance-covariance
matrix. The vector with the investment proportions of the different asset classes is given by
W= (wo,wl,..., W, ) Hence, the expected value and the variance of the portfolio return w'R
is given by x, =w'M and o, =w'XZw. Assuming that the market participants are risk-
averse, they aim to minimize the variance of the portfolio return for a given expected value,
resulting in the following optimization problem

minw'Xw (5)

subject to the constraints

w'M =const., (6)
w'e=1, (7
e'=(L...10),

which ensure that the expected value of the assets equals the target expected value (6) and that
the sum of the investment proportions is one (7) (budget constraint). Solving the numerical
optimization problem for varying expected values of the portfolio return yields the efficient
risk—return combinations (or, 4) which describe the classical capital market line = CML(or)



derived from the Tobin separation theorem (Tobin, 1958). The solution of the optimization
problem can also be determined by using the analytical expression in Merton (1972).

Solvency lines: “Admissible " risk-return combinations

Having identified the risk-return combinations that are actually attainable at the market as
described by Equation (5), we next link them with the minimum requirements for the insur-
er’s investment performance based on a target safety level. To derive risk-return combinations
(ov, ur) for the insurer’s investment strategy that are compatible with solvency requirements,
we fix the insurer’s desired safety level. In what follows, we use the shortfall probability SP at
time t =1 and fix it to a prescribed maximum value a denoted “target shortfall probability”
(note that the risk measure can as well be changed as is done in Eling et al. (2009), but closed-
form solutions may not be derivable). The insurer’s fixed solvency level simultaneously im-
pacts the achievable premiums as illustrated in Section 2 (Equation (4)). At time t = 0 the in-
surer sets the maximum value « as a target level, which is then communicated and revealed
to the policyholders, who in turn adapt their willingness to pay based on this information.
Based on the resulting amount of premium income (see Equation (4)), the insurer makes the
actual investment decision (i.e., chooses a risk-return combination), which must be compati-
ble with the announced target level ato preserve the policyholders’ trust and confidence.
Thus, the real shortfall probability SP must not exceed the reported target shortfall probability

a, i.e.,

_p(E <0)=a| - ELE] |5,
SP=P(E, <0) cp[ [El]J

where @ stands for the distribution function of the standard normal distribution. With N, de-
noting the a-quantile of the standard normal distribution, we obtain

“TTEED T WE]

For a given o, (reflected in the variance of equity capital V[E1], see Section 2), we can solve

E[E] _ A-@ru)E[L]

for ur and obtain the so-called “solvency lines” SolvL (the notion follows Eling et al., 2009) as
closed-form solutions,



(8)

C(1-2) e ~N, A G2+ (1-A) -0F ~2-A-(1-4)-0,-0¢ - e .

A

with A)=E,+P,(a,s)—7".

Thus, the solvency lines are (or, 1) -combinations that satisfy Equation (8), which implies
that for a given risk (here measured with the standard deviation o of returns of the asset port-
folio) the expected return g+ needs to be at least as high as the right side of Equation (8) in
order to ensure that the shortfall probability does not exceed the given target level a.

Maximizing shareholder value given attainable and admissible risk-return combinations

Among the typical firm objectives is the creation of shareholder value through risk- and val-
ue-based decision making regarding assets and liabilities. Toward this end, our model can be
used for deriving the shareholders” maximum expected utility while maintaining a minimum
(typically regulatory required) solvency level in order to protect the policyholders.

Let W denote the shareholders’ preference function to determine their expected utility de-
pendent on the (or, wr)-combination of the insurer’s asset allocation. In its decisions regarding
the investment portfolio, the insurer can take into account the shareholders’ preferences with-
in the limits of attainable and admissible investment opportunities, leading to the following
optimization problem

SHV max, ¥ = max \P, (9)

(Gr nur)
subject to the constraints

o, 20
c=| 4 <CML(q,) |
1, = SolvL (o)

The constraints ensure that only risk-return combinations are taken into consideration that are
attainable at the market and that are admissible according to solvency restrictions. Figure 1
exemplarily displays the feasible set

Y= {(O‘, u(o))ioel0,0,], u(c)e [SO'VL(O‘) : CML(O‘):I ,SolvL (o) < CML(O‘)} , (10)
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with o, denoting the o-coordinate of the intersection point IP between the solvency line and
the capital market line.

Figure 1: Hllustration of a feasible set Y of attainable (capital market line CML) and admis-
sible (“solvency line”) risk-return asset combinations with intersection point IP (marked with

“X”)

15% /
(e, CML{(G1#))
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The optimal (or, r)-combination that solves the optimization problem (9) depends on the
actual preference function W. Since decisions based on any utility function can be well ap-
proximated by assuming mean-variance preferences (see Kroll et al., 1984), we assume that ¥
is based on the expected value and variance of the shareholders’ wealth at the end of the peri-
od (see, e.g., Braun et al., 2015; Gatzert et al., 2012).2 One should thereby take into account
that shareholders generally have limited liability and thus at most lose their initial equity capi-
tal in case of insolvency.* Due to limited liability, the shareholders’ wealth at t = 1 is given by
max(0,E1) and, hence, the preference function P! is given by

¥ = E(max(El,O))—;V(max(El,O)), (11)

where k represents the risk aversion coefficient, with k < 0 implying a risk-seeking, k = 0 a
risk-neutral, and k > 0 a risk-averse risk attitude.

8 Note that full compatibility of mean-variance analysis and expected utility theory is given in case of normally
distributed returns or a quadratic utility function. Even if these conditions do not hold, decisions of any utility
function can be well approximated by those based on mean-variance preferences as shown in Kroll et al.
(1984).

4 In general, the premium level should thus correspond to the value of indemnity payments less the default put
option arising from the shareholders’ limited liability, which we have not taken into account in pricing as we
assume (in the sense of a behavioral-type approach) that policyholders are willing to pay a premium that de-
pends on their risk sensitivity and that may thus exceed the expected payoff. These assumptions can also be
changed, but closed-form solutions for the optimization problem as well as the solvency lines are no longer
possible, such that one has to revert to numerical simulation approaches.
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In general, the term max(0,E1) can be interpreted as a normally distributed random variable
censored at 0 from below. If @ stands for the distribution function of the standard normal dis-
tribution and ¢ for the corresponding density function, the following holds for Y ~ N (y,az)
(see, e.g., Greene, 2012):

E[max(a,Y)]=®(a)-a+(1-®(a))(u+o-1) and

V[max(a,Y)]=o*(1-®(a))-(1-5 +(a - 1) -®(a)),

with ¢ = 2=# 4= o) ds=22-ia.

For the terms in Equation (11) we can thus derive the closed-form expressions

E[max(0,E,)]=E[E,]- @ (x)+V [E] -¢(x) and

V[ max (o, El)]=V[El]-<D(x)~[1{(g(():())J +g(();))~xJ+(x+g(();))} -CD(X)},

The expected value E[ max (0, E,)] is monotonically increasing in E[E1] (and thus in ur) as
well as in V[E1] (and thus in or depending on the correlation, see also Equations (1) and (2))
as can be seen from the derivatives (see the Appendix for the detailed derivation)

OE[ max (0, E,)] E[E] }
EE] q’[ﬁ[al

OE[ max(0,E,)] ) _ 1 | E[E] |
~VET ) |T2fE] O\ WIE]

and thus
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0E[max(0,E,)]) [9E[max(0.E,)] OE[E]

ou, ~ OE[E, ] o,
OE[max(0,E,)] | | oE[max(0,E,)] aV[E,]
oo N[E] oo,

(12)
@L—E[El] J-%
WIE]

E[El]]J-(Z-Aé-O'r—Z-Ab'(l—ﬂv)'O-c'prc)

1
2V [E] ‘”{Ma

while the derivatives of the variance V[max(0,E1)] cannot be expressed with a suitable closed-
form expression.

Therefore, in case of risk-neutrality (k = 0) and non-positive correlation prc, W' (=
E[max(0,E1)]) is monotonically increasing in xr and or. In addition, since the capital market
line CML(") as the upper bound of attainable risk-return combinations is strictly monotonical-
ly increasing under the common assumption of a positive Sharpe ratio, i.e. a positive risk
premium per unit of standard deviation, it holds that

max yzCI\/IL(O',P).

(o,pm)eY

Under these assumptions, the maximization problem in (9) is thus solved by the intersection
point IP between the capital market line and the solvency line,

[max o, max y):(o-lp,CML(O',P))eY,

(o.u)eY  (o,u)eY

which is an element of the feasible set Y (see also Figure 1). Hence, in this case, maximizing
the shareholder value while maintaining a minimum solvency status in order to protect the
policyholders requires the insurer to invest in the risk-return combination given by the inter-
section point between the capital market line and the solvency line.

However, in case of a risk-averse or risk-seeking attitude, general statements about the impact
of ur and or on the preference function P! cannot be derived due to a lack of knowledge about
the gradient of the variance V[max(0,E1)], which is why we later use numerical analyses to
obtain more insight regarding the optimal risk-return combination that maximizes this prefer-
ence function (in Section 4).
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To simplify the optimization problem and in order to derive closed-form expressions, we next
assume a preference function W2 that does not account for limited liability, i.e.,

V(E). (13)

When considering the gradients of the preference function 2,

ov;
0
b =[ : % j (14)
6\Pk _k'A\)'Gr+k‘A\)'(1_ﬂ’)'o-c'prC
oo

r

one can see that the function is monotonically increasing in ur, but that the effect of or again
depends on the correlation between assets and claims prc as well as the risk aversion parame-
ter k. In particular, P is monotonically increasing in or if and only if

—k-Af-O'r+k-/-\)-(1—/1)-GC-prc >0.

We first concentrate on the case where k > 0 (risk-aversion), which implies that this equation
holds if the correlation satisfies

k-A-(1-2)-0c-pe2k-A -0, = pc 2 A -0, 1((1-2)-0¢ ). (15)

To ensure this condition (and that p,. <1), the correlation must be either rather large (and
positive, implying a good diversification between assets and liabilities), or the standard devia-
tion of assets (in the nominator) should be rather small as compared to the standard deviation
of liabilities, which can thus be rather restrictive. If k < 0 (risk-neutrality or risk-seeking be-
havior of shareholders), which is generally in line with the theoretical results in Gollier et al.
(1997),° there is either no restriction for the correlation (if k = 0) or in case of k < 0, the corre-
lation must satisfy

prCSA)'Gr/((l_A)'GC)' (16)

5 Gollier et al. (1997) theoretically show that (contrary to first intuition) a risk-neutral or risk-averse attitude of
shareholders in case of limited liability (see preference function P') corresponds to a risk-seeking or risk-
neutral attitude when considering the preference function W2 in terms of unlimited equity capital Ei. In par-
ticular, if shareholders are risk-neutral (or perfectly diversified) in case of limited liability, they will aim to
maximize the expectation of a convex function of the equity capital E; (Gollier et al., 1997, p. 348), implying
that shareholders exhibit risk-seeking behavior in investment decisions regarding the equity capital E; since
they can only benefit from additional risk in E1. The shareholders’ risk-averse attitude in case of limited lia-
bility leads to less extreme but similar results. Here, the optimal risk exposure of E; is also always higher
than under full liability and often results in maximum risk taking.
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Condition (16) holds in the special case where the correlation between assets and claims prc is
zero or negative, thus implying an insufficient diversification in an asset-liability context (see
Fischer and Schlitter, 2015). In particular, in this case low asset values are positively related
to high liability values and hence risks are not well diversified, resulting in a risky asset-
liability-profile (Fischer and Schltter, 2015).

In both cases, i.e., in case of risk-neutrality or if Equations (15) or (16) are satisfied depending
on k and the respective correlations, we can see that the preference function W2 is not only
monotonically increasing in ur but also in or. Identical argumentation as in case of ¥ with
risk-neutrality and non-positive correlation leads to the result that the intersection point IP
between the capital market line and the solvency line solves the optimization problem (9) and
thus maximizes shareholder value while maintaining a minimum solvency status to protect the
policyholders. We conduct further analyses on the other cases in the following numerical
analyses section.

4. NUMERICAL ANALYSES

In this section, we provide numerical examples based on the closed-form solutions derived in
the previous section to illustrate the requirements for the insurer’s capital investment strategy
that satisfy the solvency rules as well as the associated maximum shareholder value under
various conditions and to derive respective key drivers.

Input parameters

Input parameters are summarized in Tables 1 to 3. The parameters of the insurer in Table 1
are thereby based on the parameters of a German non-life insurer estimated in Eling et al.
(2009) (except for the newly introduced parameters asset-claims correlation, premium load-
ings, fraction of proportional reinsurance, which were subject to robustness tests). Further-
more, the market portfolio and the capital market line are calibrated based on monthly time
series from January 2004 to November 2015 of benchmark indices from the Datastream data-
base that illustrate the available investment opportunities. Each benchmark measures the total
investment returns for its asset on a Euro basis including coupons and dividends where appli-
cable. As is done in Eling et al. (2009), we consider 11 indices with different regional focus in
the four asset classes (stocks, bonds, real estate, and money market instruments) insurers typi-
cally invest in. The empirical risk-return profiles for all considered assets are given in Ta-
ble 2, the associated variance-covariance matrix in Table 3. For the base case, the resulting
capital market line CML is then given by the solution of the optimization problem (5):

4, =2.04%+0.34-G.. (17)



Table 1: Input parameters (base case)
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Available equity capital at time O E, 175
Expected value of claims He 1,171
Standard deviation of claims o 66
Correlation between stochastic return of assets and claims Drc 0
Premium loading for an insurer without default risk 0 5%
Fraction of the proportional reinsurance ) 0
Premium loading for the proportional reinsurance S 5%
Policyholders risk sensitivity S 0,03,1
Maximum value of shortfall probability (target shortfall probability) a 0.5%, 1%, 5%

Table 2: Descriptive statistics (annualized) for monthly return time series from January 2004
to November 2015 from the Datastream database

Asset class | Index Description L Gi

Money JPM Euro Cash 3 Months (1) Money market in the EMU = r; 2.04% | -

market

Stocks MSCI World ex EMU (2) Worldwide stocks without the EMU 8.11% | 47.06%
MSCI EMU ex Germany (3) Stocks from the EMU without Germany 5.92% | 61.71%
MSCI Germany (4) Stocks from Germany 8.550 | 68.16%

Bonds JPM GBI Global All Mats. (5) | Worldwide government bonds 458% | 28.83%
JPM GBI Europe All Mats. (6) | Government bonds from Europe 5.30% | 14.46%
JPM GBI Germany All Mats. (7) | GOVernment bonds from Germany 4.74% | 14.57%
IBOXX Euro Corp. All Mats (8) | COrPorate bonds from Europe 431% | 13.71%

Real estate GPR General World (9) Real estate worldwide 911% | 51.67%
GPR General Europe (10) Real estate in Europe 6.71% | 36.53%
GPR General Germany (11) Real estate in Germany 2.60% | 9.22%

Table 3: Variance-covariance matrix (annualized) for monthly return time series in Table 2

@) (2) 3) 4) (5) (6) (1) (8 ©) (10) (11)
(1) | 0.000| 0.000| 0.000| 0.000| 0.000| 0.000| 0.000| 0.00| 0.000 | 0.000 | 0.000
) 0221 | 0.233| 0.263| -0.018 | -0.004 | -0.015 | 0.022 | 0.189 | 0.110 | 0.021
3) 0.381 | 0.383 | -0.075| -0.010 | -0.033 | 0.031 | 0.211 | 0.158 | 0.028
(4) 0.465 | -0.078 | -0.018 | -0.036 | 0.029 | 0.228 | 0.156 | 0.031
(5) 0083 | 0.029| 0.032| 0.004| 0.001| -0.015| -0.001
(6) 0.021| 0.019| 0.010| 0014 | 0007 | 0.002
) 0.021 | 0.008| 0.003 | -0.003 | 0.000
(8) 0.019 | 0.036| 0.026| 0.004
(9) 0.267 | 0.155| 0.027
(10) 0.133 | 0.024
(11) 0.008
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The impact of policyholder risk sensitivity on admissible risk-return asset profiles

Figure 2 displays attainable risk-return combinations based on market restrictions concerning
the asset allocation as reflected by the capital market line (CML, solid black line, see also
Equation (17)). Furthermore, admissible combinations are presented as defined by the solven-
cy lines in Equation (8), which represent the minimum expected rate of return u, that the in-
surer has to achieve for a given standard deviation o in order to satisfy the intended safety
level given by the target shortfall probability «. Therefore, for its investment strategy the in-
surer has to choose risk-return combinations above the respective solvency line and below the
capital market line, which represent the set Y of attainable and admissible risk-return combi-
nations (Equation (10)) as highlighted by the grey area in Figure 2.

Figure 2 shows that the admissible risk-return combinations (solvency lines) strongly depend
on the policyholders’ risk sensitivity. In particular, for higher risk sensitivities (going from s =
0 to 1 in the considered example, see Figures 2a) to c)), the solvency lines are shifted upwards
for a given shortfall probability (« = 0.5%), until for s = 1 the solvency line in Figure 2c) lies
above the CML, such that no possible allocation opportunities remain and the grey area dis-
appears. Thus, the results emphasize that a more risk sensitive assessment of the solvency
status reduces policyholder demand and hence the achievable premium income, implying that
the insurer has considerably less flexibility for its asset allocation in order to fulfill the sol-
vency requirements.

We also observe in Figure 2a) that in the case without policyholder risk sensitivity, expected
asset returns may even be negative for low standard deviations, and the insurer would still
satisfy the required safety level due to sufficient equity capital and premium loadings. Further
sensitivity analysis emphasizes that reducing the initial equity capital or lowering the premi-
um loading implies an upward shift of the solvency lines, such that negative expected returns
are no longer permitted.
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Figure 2: Attainable (capital market line CML) and admissible (“solvency line”) risk-return
combinations given no (s = 0), medium (s = 0.3) and high (s = 1) policyholder risk sensitivity
for a given target shortfall probability «=0.5%

a) Risk-return asset combinations for no risk sensitivity (s = 0)
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b) Risk-return asset combinations for medium risk sensitivity (s = 0.3)
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Maximizing shareholder value

The impact of the assets’ risk-return combinations on the sharcholders’ risk preferences is not
straightforward in all cases as already laid out in Section 3. However, in case of risk-neutral
attitude, both preference functions W¥! (in case of non-positive correlation) and ¥?, i.e.
E[max(0,E1)] and E[E1], are monotonically increasing in ur and or (See Equations (12) and
(14)), implying that the intersection point between the capital market line and the solvency
line IP solves the optimization problem (9) and thus maximizes the sharecholders’ expected
utility as formally derived in Section 3. However, in case of risk-averse or risk-seeking atti-
tude, further numerical analyses are needed. Therefore, Figures 3 and 4 as well as Table 4
exemplarily demonstrate the impact of ur and or on the preference functions W¥* and ¥? for
k =-1 (risk-seeking) and k = 1 (risk-aversion) and prc = -0.5, 0, 0.5 for medium policyholder
risk sensitivity (s = 0.3) given a reported target shortfall probability of « = 0.5%. Both figures
show that the results strongly depend on the shareholders’ risk attitude as well as on the corre-
lation between assets and liabilities (see also Table 4 regarding the sign of the impact).

Figure 3: Sensitivity analysis of ¥ and W2 regarding ur for various correlations prc and risk
attitudes k in case of medium policyholder risk sensitivity (s = 0.3) for a given target shortfall
probability &= 0.5%
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While the changes in the preference functions due to changes in ur in Figure 3 appear negligi-
ble, one can see in Table 4 that — consistent with what we formally showed in Section 3 — the
impact of xr on P2 (full liability case) is positive in all considered examples, which implies
that maximizing ur ceteris paribus also maximizes shareholder value. This is different for the
preference function W, which assumes limited liability. One can observe that in case of risk-
averse attitude (k = 1) along with a non-positive asset-liability correlation (prc = -0.5, 0), the
preference function is first decreasing and then increasing again (see Figure 3a and Table 4),
which stems from offsetting effects arising from the variance and expected value of the share-
holders’ wealth (see Equation (11)). While an increasing u leads to an increase in
E[max(0,E1)] and V[max(0,E1)], the latter increase is dampened for higher ur. Thus, the in-
crease of 0.5-V[max(0,E;1)] is weaker as compared to the increase in E[max(0,E1)], thus im-
plying that in case of risk-aversion with k = 1, ¥* = E[max(0,E1)] — 0.5-V[max(0,E1)] is first
decreasing and then increasing for higher sr.

Table 4: The impact of xr and oy on the shareholders’ preference functions P! and 2 for var-
ious correlations prc and risk attitudes k in case of medium policyholder risk sensitivity (s =
0.3) for a given target shortfall probability « = 0.5%

W1 (given limited liability), Y2 (given full liability),

impact of... impact of...
HUr Or Hr or
prc=-05 k=-1 T i) i) T
k=1 0 ! 1 ¢
prc=0 k=-1 ) i) i) )
k=1 ) { i) {
prc=05 k=-1 T 1 1 7
k=1 T T T T

Furthermore, Figure 4 shows that the impact of r on P! and W2 is very similar for both pref-
erence functions, and that it is exactly opposite for risk-averse and risk-seeking attitude (see
also Table 4). For non-positive asset-liability correlations (prc = -0.5, 0), both ¥ and W2 are
monotonically increasing in or for a risk-seeking attitude (k = -1) and decreasing in case of
risk-aversion (k = 1). Hence, in this case the insurer ceteris paribus would have to choose the
most (k = -1) or least (k = 1) risky asset allocations for maximizing shareholder value in the
considered examples.

For a positive correlation prc = 0.5 and thus in the presence of positive diversification bene-
fits, the results are not as straightforward as in case of a non-positive correlation, since the
sign of the slope of both ! and W2 changes, e.g. in case of a risk-seeking attitude (k = -1, see
upper lines in Figure 4) from decreasing to increasing, and in case of risk-aversion (k = 1)
vice versa, which is due to the non-monotonic behavior of V[max(0,E1)] and V[E1] regarding
or. Due to the positive asset-liability correlations prc, both V[max(0,E1)] and V[E1] are de-
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creasing for low or and increasing for high or (in case of V[Ea] this could be analytically de-
rived in Equation (15)).

Figure 4: Sensitivity analysis of ¥! and W2 regarding or for various correlations prc and risk
attitudes k in case of medium policyholder risk sensitivity (s = 0.3) for a given target shortfall
probability «=0.5%
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In summary, the preference functions W2 is monotonically increasing in ur and oy in case of
k = 0 (i.e. risk-neutral attitude), which is the same for ¥ in case of k = 0 (risk-neutral attitude)
and ¥? in case of k < 0 (risk-seeking attitude) and non-positive correlations between assets
and liabilities. This leads to the result formally shown in Section 3 that the intersection point
between the capital market line and the solvency line IP solves the optimization problem for
the present setting and thus maximizes the shareholders’ preference functions under solvency
constraints.® The intersection point is marked with an “x” in Figure 2, which illustrates that a
higher policyholder risk sensitivity leads to a lower intersection point IP and therefore to a
reduction of maximum shareholder value in terms of the considered preference functions W¥*

®  The numerical analysis of ¥! shows similar results, i.e. monotonically increasing behavior in ur and oy in
case of non-positive correlation between assets and liabilities and k < 0, and hence implies that the intersec-
tion point also solves the shareholder maximization problem.
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and 2. In particular, for preference function P! (limited liability) and risk-neutrality (k = 0),
the maximum shareholder value decreases from SHV ™% (k = 0) =294 in case of no (s =0)
risk sensitivity (Figure 2a) to SHV ™ (k=0)=219 for medium (s = 0.3) risk sensitivity
(Figure 2b). In case of high (s = 1) risk sensitivity (Figure 2c), policyholders ceteris paribus
pay considerably lower premiums, implying that no investment possibilities remain that fulfill
the solvency requirements, and thus preventing the creation of shareholder value. For reasons
of tractability regarding shareholder value maximization, in what follows we concentrate on
these cases where the intersection point between the capital market line and the solvency line

(06,CML (05 )) maximizes the shareholders’ preferences.
The impact of the insurer’s safety level

We next investigate the impact of the policyholders’ risk sensitivity and thus their willingness
to pay depending on the reported solvency levels by varying the target shortfall probability
a=0.5%, 1%, 5% in Figure 5. As can be seen when comparing Figures 5a) to c), the gap be-
tween the solvency lines for s = 0 and s = 1 increases considerably the higher the target short-
fall probability. In particular, the solvency line neglecting the policyholders’ willingness to
pay (no risk sensitivity s =0, lowest dotted line) shifts downward for a higher ¢, since it is
easier for the insurer to fulfill the solvency requirements. In contrast, the solvency line for a
high (s = 1) policyholder risk sensitivity shifts upward for a higher «, since the information of
the higher shortfall probability reduces the achievable premium income (see Equation (4)).
Therefore, it is increasingly difficult to satisfy the target solvency status communicated to the
policyholders the weaker the target solvency standards are. In case of medium (s = 0.3) risk
sensitivity, the solvency line remains nearly unchanged resulting from the sum of these two
offsetting effects.

Overall, the results strongly emphasize that is crucial to take into account the policyholders’
risk sensitivity and thus the purchase behavior depending on the safety level, especially if
insures have to reveal their solvency status as required by Solvency IlI. For higher reported
target shortfall probabilities, the willingness to pay by risk-sensitive policyholders declines
and the premium income strongly decreases, which can lead to considerable difficulties in
maintaining the desired solvency level and thus also in generating shareholder value.
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Figure 5: Attainable (capital market line CML) and admissible (“solvency line”) risk-return
combinations given no (s = 0), medium (s = 0.3) and high (s = 1) policyholder risk sensitivity
for varying target shortfall probabilities «
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The impact of dependencies between assets and liabilities

To investigate the impact of dependencies between assets and liabilities on the requirements
for the investment strategy and hence for maximizing shareholder value, we derive and com-
pare the solvency lines under different correlations prc = -0.5, -0.25, 0, 0.25, 0.5, and thus
different diversification levels in Figure 6. The base case is prc = 0, where asset and liability
values are uncorrelated. In case of positive correlations, high asset values are positively relat-
ed to high liability values and hence the risks are well diversified, resulting in a well-balanced
asset-liability profile. Negative correlations, in contrast, represent an increasing riskiness of
the asset-liability profile (in terms of the variance of equity capital) due to insufficient diversi-
fication, i.e. low asset values are positively related to high liability values (see Fischer and
Schltter, 2015).

Figure 6 shows that the convexity of the solvency line increases for higher correlations prc,
while the intercept remains unchanged. A more negative linear dependence between assets
and liabilities is thereby penalized by higher solvency capital requirements and reduces the
area of acceptable and attainable risk-return combinations. It is thus crucial to take into ac-
count diversification effects between assets and the insurance portfolio, which considerably
impact the range of admissible investment risk profiles. Furthermore, an insufficient diversifi-
cation between in an asset-liability context in terms of a lower prc has negative consequences
in regard to maximizing shareholder value, as the intersection point moves to the lower left,
leading to restrictions in capital investment and a lower maximum shareholder value.

Figure 6: Attainable (CML) and admissible (solvency lines) risk-return combinations for a
given target shortfall probability « = 0.5% and medium (s = 0.3) policyholder risk sensitivity
for various correlations prc
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The impact of reinsurance decisions

We next focus on decisions regarding the liability side by studying the impact of reinsurance
contracts on (optimal) asset portfolio combinations. Figure 7 exhibits risk-return asset combi-
nations for different fractions of proportional reinsurance A =0, 0.3, 0.5.

Figure 7: Attainable (CML) and admissible (“solvency lines”) risk-return combinations for
a = 0.5% for different levels of proportional reinsurance A

a) Risk-return asset combinations for no risk sensitivity (s = 0) and various levels of pro-
portional reinsurance A
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b) Risk-return asset combinations for high risk sensitivity (s = 1) and various levels of pro-
portional reinsurance A
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The results show that the solvency lines shift upward when increasing 4 given a high (s =1)
risk sensitivity (Figure 7b), whereas in the case without (s = 0) risk sensitivity (Figure 7a) the
solvency lines shift downward, thus allowing the insurer more flexibility in the asset alloca-
tion and creating opportunities for enhancing shareholder value. This opposite behavior can
be explained by the fact that the reinsurance premium is fixed, whereas the premiums of the
insurer vary depending on to the policyholders’ risk sensitivity. In the case without (s = 0)
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risk sensitivity, premiums and reinsurance prices are calculated in the same manner by using
the actuarial expected value principle with the same loading. Hence, such decisions regarding
the liability side generate more flexibility on the asset side if policyholders exhibit no (or a
low) risk sensitivity. This is generally in line with Diasparra and Romera (2008) who study
upper bounds for the shortfall probability in an insurance model where the risk process can be
controlled by proportional reinsurance. They show i.a. (also assuming a fixed premium in-
come) that a rising reinsurance level leads to decreasing upper bounds of the shortfall proba-
bility. However, our results show that taking into account the policyholders’ willingness to
pay given a high (s = 1) risk sensitivity, this effect is reversed. In particular, as in this case
there are no admissible and attainable asset allocation opportunities, shareholder value cannot
be created as the insurer has to pay the fixed reinsurance premiums from a much lower pre-
mium income caused by the policyholders’ premium reduction (see Equation (4)). The higher
relative costs for reinsurance thus lead to stronger restrictions on the asset side, and increasing
the quota share of reinsurance A further intensifies this effect.” Overall, this illustrates the
strong interaction between decisions on the asset and liability side and it emphasizes the rele-
vance of taking into account policyholders’ willingness to pay for insurance products also in
the context of reinsurance contracts, for instance, given that solvency levels have to be report-
ed.

The impact of the risk-free interest rate

Lastly, since interest rates play an important role for solvency levels, especially against the
background of currently very low interest rate levels, Figure 8 illustrates the attainable and
admissible risk-return asset combinations for various levels of the risk-free rate.

When comparing Figures 8a) and 8b) it can be seen that the slope of the capital market line
ceteris paribus increases for a decreasing risk-free interest rate from rr = 2.04% (base case) to
ri = 0.05%, i.e. the risk premium per unit of standard deviation increases, whereas the inter-
cept of the capital market line decreases. Aggregating both offsetting effects leads to a reduc-
tion of the set of attainable and admissible risk-return combinations in the present setting and
thus to a lower intersection point (a,P,CML(a,P)), implying a reduction of maximum share-
holder value. These results emphasize that the current phase of low interest rates strongly re-
stricts the insurer’s range of admissible and attainable risk profiles regarding the asset invest-
ment, since the insurer cannot invest in riskier assets while maintaining the solvency level,
resulting in a lower shareholder value.

" Further analyses showed that, as expected, the solvency lines shift upward for an increasing reinsurance pre-
mium loading J". Therefore, the insurer generally has to take into account that higher loadings 6™ increase
the costs and thus reduce the area of attainable and admissible risk-return combinations und thus the maxi-
mum shareholder value.
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Figure 8: Attainable (capital market line CML) and admissible (“solvency line”) risk-return
combinations for a given target shortfall probability « =0.5% and given medium (s =0.3)
policyholder risk sensitivity for different levels of the risk-free interest rate rt
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5. SUMMARY

In this article, we provide a simplified internal model of a non-life insurer and use this model
to study risk- and value-based management decisions regarding the capital investment strate-
gy depending on various decisions regarding the liability side. We derive minimum capital
standards for the insurer’s asset allocation based on a fixed solvency level, since adjusting the
asset side to satisfy solvency capital requirements should generally be easier than short-term
adaptions regarding equity capital or the liability side as pointed out by Eling et al. (2009). In
this setting, we link the admissible (i.e. satisfying solvency requirements, following Eling et
al. (2009)) risk-return combinations of the insurer’s asset portfolio to actually attainable allo-
cation opportunities at the capital market using Tobin’s (1958) capital market line. We there-
by extend previous work in several important ways: We explicitly include the policyholders’
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willingness to pay, which to the best of our knowledge has not been done so far in this con-
text, take into account the insurer’s reported target safety level and the policyholders’ risk
sensitivity, and combine this model with a shareholder value maximization approach for risk
and value-based management. We further study the impact of asset-liability dependencies, the
influence of proportional reinsurance contracts and the impact of the risk-free interest rate,
which considerably influence the set of attainable and admissible risk-return combinations as
well as the maximum achievable shareholder value.

To study the impact of decisions with respect to assets and liabilities on shareholder value, we
assume mean-variance preferences for shareholders and consider the cases with and without
limited liability. To gain deeper insight, we conduct comprehensive analytical and numerical
analyses and formally show that the intersection point between the capital market line and the
solvency line maximizes shareholder value in certain scenarios (in case shareholders exhibit
risk-neutral attitude or in case of unlimited liability with risk-seeking attitude with non-
positive asset-liability correlations), while optimal solutions in other cases require numerical
analyses.

Our results further show that the consideration of the policyholders’ willingness to pay de-
pending on their risk sensitivity is crucial. In case of high risk sensitivity, a low solvency sta-
tus communicated to the policyholders can considerably decrease the premium income, which
causes difficulties in maintaining the solvency level and ultimately reduces shareholder value
due to an insufficient premium income and a reduced flexibility to invest in riskier assets.
This is especially relevant in the future, where insurers have to report their solvency status
according to Solvency Il. To satisfy the interests of both shareholders and policyholders, our
approach can thus be used for balancing shareholder value and risk taking. In particular, de-
pending on the policyholders’ risk sensitivity, it is advisable for firms to closely monitor the
reactions of policyholders to safety levels and to possibly enhance the solvency level in order
to generate more flexibility for the investment strategy and to increase shareholder value.

In addition, our numerical analyses reveal the impact of different key drivers on admissible
risk-return combinations and hence shareholder value. We find that a negative correlation
between assets and liabilities can considerably reduce the area of attainable and admissible
risk-return combinations, emphasizing that diversification between assets and the underwrit-
ing portfolio can generate more flexibility regarding the risk profile of the capital investment,
which also implies the potential of generating a higher shareholder value. We further find that
the set of attainable and admissible investment opportunities and thus the maximum share-
holder value only increases for higher reinsurance portions if policyholders are not risk sensi-
tive. In particular, this effect is reversed and the shareholder value generally decreases when
taking into account the policyholders’ willingness to pay, as the insurer’s premium income,



28

which must be used to pay the fixed reinsurance premiums (not subject to risk sensitivity in-
fluences), is reduced, implying a reduction of the set of available risk-return asset combina-
tions. Furthermore, an analysis of the impact of the risk-free interest rate shows that the cur-
rent phase of low interest rates strongly restricts the insurer’s investment opportunities and
considerably reduces shareholder value.

Overall, our results strongly emphasize the strong interaction between decisions regarding the
asset and the liability side, and they underline the importance of considering the policyhold-
ers’ demand for insurance products given that solvency levels have to be reported, which
should be taken into account by insurers in the context of their risk- and value-based man-
agement decisions.
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APPENDIX

Derivatives of E[max(0,E1)]:
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where we use §¢(X) =—x-p(x),xeR.
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